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ABSTRACT
Delay-sensitive multimedia streaming applications require their
data to be delivered before a deadline to be useful. The data trans-
mitted by these applications can usually be partitioned into blocks
with different priorities, assigned based on the impact of a block on
the Quality of Experience (QoE) if it misses its delivery deadline.
Meet their deadline requirements is challenging due to the dynam-
ics of the network and these applications’ high demand on network
resources. To encourage the research community to address this
challenge, we organize the “Meet Deadline Requirements” Grand
Challenge at ACM Multimedia 2021. This grand challenge provides
a simulation platform onto which the participants can implement
their block scheduler and bandwidth estimator and then benchmark
against each other using a common set of application traces and
network traces.

CCS CONCEPTS
• Information systems → Multimedia streaming.
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1 INTRODUCTION
Delay-sensitive multimedia streaming applications, such as live or
interactive media applications, require a tight end-to-end latency
(i.e., the time between the data is generated and the time it is ren-
dered). For example, live video broadcasting requires end-to-end
latency on the order of 5 seconds, to support interactions between
broadcasters and viewers. Real-time communication (RTC) such as
video conferencing has stricter latency constraints and the latency
of these applications cannot exceed a few hundred milliseconds to
enable natural interaction [3]. If the content cannot be delivered
by the deadline (i.e., missing deadline), the delivery efforts may be
wasted [21]. Such applications usually transmit data in application-
level blocks (e.g., chunks in live video streaming, frames in video
conferencing). When a block misses its deadlines, the users’ Quality
of Experience (QoE) degrades.

Delay-sensitive multimedia applications usually utilize methods
such as bitrate adaptation to match the bitrate of a block to trans-
mit to the network bandwidth. There are, however, obstacles in
producing blocks that precisely matches the network condition and
achieving the optimal results in terms of meeting a block’s deadline.
A typical example of such obstacle is that the encoder should not
change the target bitrate frequently to avoid flickering effect [17].
Therefore, it is also important to design content delivery services
that consider the deadline of each block and minimize blocks that
miss deadline. Internet research community and standardization
organizations are increasingly focusing on data transmission opti-
mization of delay-sensitive applications. QUIC [15] address some
problems such as head-of-line blocking and unnecessary multi-RTT
handshake latency. The datagram extension to QUIC [18] allows
unreliable delivery service to reduce the latency. However, none of
them carefully consider the deadline requirements. Designing such
deadline-aware delivery service faces three primary challenges: (i)
the perception of network dynamic is often lagging and imprecise
in Internet, (ii) when the rate of blocks produced by applications
exceeds the network capacity, sequentially delivering the blocks
will cause accumulative delay which may cause a series of deadlines
missed, (iii) blocks may have conflicting attributes like deadline,
priority and size that need to be considered together.
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Block completion time is not only affected by the goodput but
also by the connection latency. Traditional loss-based congestion
control algorithms are unsuitable for delay-sensitive applications
since their probe mechanism induces a time-varying stochastic
delay component into the propagation time [7]. Many RTT-based
approaches have been proposed to achieve low queuing delay since
the innovative work by Jain [11]. Several methods of these, such
as Vegas [5], have been widely used by operating systems and
applications. Some other works use one-way delay as the key signal,
such as LEDBAT (over UDP) [20]. GCC employs both delay-based
and loss-based controllers to achieve extremely low latency for
video conferencing [7]. BBR [6] aims to maximize the goodput with
minimal queue delay by probing the bottleneck bandwidth and
min RTT. Sprout [24] takes a stochastic approach to contain delays
while maximizing the throughput. Remy [23] employs the a-priori
knowledge of the network to train a machine to learn schemes.
However, none of these solutions takes the deadline requirements
into consideration. If we utilize deadline or other information about
blocks, higher QoE can be achieved compared to those approaches
which not aware of application data attributes.

To accelerate the optimization of new applications as well as
improve the users’ QoE of delay-sensitive multimedia, we hope
to conduct a series of “Delay-sensitive Multimedia” challenges. At
ACM Multimedia 2019, we organized Live Video Streaming Grand
Challenge [25] that focuses on improving QoE in low-latency live
video streaming, with the team from Communication University of
China (CUC) [19] winning the 2nd prize among all grand challenges.

At ACM Multimedia 2021, we organize the “Meet Deadline Re-
quirements” challenge. This competition aims to encourage the
research community to join forces and improve the ability of the de-
livery service modules in multimedia applications to meet deadline
requirements. We provide a simulation platform (Section 2), video
datasets, network datasets (Section 3), and evaluation procedure
using a QoE model (Section 4). In this challenge, 45 teams submitted
their algorithms (summarized in Section 5). We have open-sourced
the platform and datasets [9], hoping these resources can assist
everyone in optimizing the QoE of delay-sensitive multimedia.

2 BLOCKS DELIVERY SIMULATOR
In this challenge, we focus on the delay-sensitive applications which
send data as blocks. Typically, data delivery of these block-based
applications works in the following way: the sender continuously
generates blocks and adds them to a delivery queue to send them as
soon as possible, expecting them to arrive at the receiver before their
deadlines. Since the network is dynamic and has limited resources,
it is necessary to decide which block to send first at each moment
and how fast it can be sent.

2.1 Architecture
The simulator provided for this grand challenge simulates the work-
flow above. It is structured into three components: the Solution,
the Environment, and the QoE model, as shown in Figure 1. The
Environment is the main part of the simulator, driven by discrete
events. Before the simulation, one or more Senders, Links, and
Receivers will be created according to the Environment setting.
Each Sender simulates a list of application traces while each Link

Table 1: Observations from Simulator

Params Params Description

time(s) Physical time
block_id ID of the block, globally unique
priority Priority of the block

deadline(ms) Deadline of the block
create_time The time when the block was created

block_size(bytes) Size of the block
miss_ddl Whether the block missed deadline
packet_id ID of the packet, globally unique
event_type Packet loss or arrival
inflight The number of inflight packets

payload(bytes) Size of payload in the packet
packet_size(bytes) Size of the packet

offset The offset of the payload in the block
retrans Whether this is a retransmission packet

is simulated based on a network trace. These traces will be used to
simulate the data patterns of applications and the dynamics of the
network condition. The simulation settings also need to specify a
Solution for each sender. The Solution contains a Block Scheduler
and a Bandwidth Estimator. The Bandwidth Estimator controls the
sending rate of the flow, trying to maintain a small queue delay
while making full use of available bandwidth. Each time the sender
is about to send a packet, the Block Scheduler will decide which
block should be sent. More details about the Solution component of
the simulator can be found in Section 4. After each simulation, the
simulator will evaluate the QoE of every pair of application peers.
The QoE model used in our platform is described in Section 4.2.

Figure 2 illustrates the structure of a typical Environment in this
challenge. There are usually several senders and receivers sharing a
link. Blocks are generated based on the application traces. After the
scheduling of the Block Scheduler and the Bandwidth Estimator,
the data leaves the sender as packets and enters the Link. The total
available bandwidth and minimal delay of the Link vary according
to the network trace. If the data arrival rate exceeds the bandwidth,
the packets waiting to be sent will be temporarily stored in a Drop
Tail FIFO queue. When the last packet of a block arrives at the
receiver, the completion time of this block can be calculated and
then used for QoE calculations.

2.2 Simulator Implementation
Based on the structure described, we developed a discrete event sim-
ulator to provide a re-producible environment for experimenting
with the Block Scheduler and the Bandwidth Estimator algorithms.
The simulator exposes a list of observations from the environment,
some of the observations are listed in Table 1). The algorithms in
the Solution can decide the next action based on these observations.

We have open-sourced the simulator as a package [8]. The simu-
lator package can be used alone for the simulation of delay-sensitive
blocks transmission, or be used together with the tools and datasets
provided in the challenge repository [9]. It contains integrated code
of the event-based Engine, Links, Senders, Packets, etc. Part of Link
and Sender code are modified from PCC-RL [12] proposed in [13].
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Figure 1: Overview of Blocks Delivery Simulator.
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Figure 2: Structure of a typical Environment.

An earlier version of the simulator was tested in a competition
called AITrans2 in October 2020. Around one hundred teams par-
ticipated in this competition. The participants are asked to develop
algorithms which will be tested through both the simulator and a
live benchmark system. The relative performance ranking of submit-
ted algorithms is mostly consistent when tested with the simulator
and the live system, supporting the efficacy of our simulator.

3 DATASET DETAILS
The dataset used in this challenge consists of three parts: the block
traces, the background traffic traces, and the network traces. Each
application scenario contains one or more block traces, which can
be combined with any network traces to simulate the process of
using delay-sensitive applications in a certain network condition.
Background traffic traces are used to simulate the complex wide
area network environments and add more dynamics.

3.1 Block Traces
Figure 3 takes the RTC application as an example to illustrate the
typical scenarios of various blocks. Generally, streamed data from
RTC applications can be divided into three categories. The first
category is the control signal, such as predicted bandwidth, target
bit rate setting, etc. Control signals must arrive timely to ensure
the stability of RTC application services. The second category is
audio, that is, the user’s voice data after noise elimination. The third
category is video recorded by the camera. These three types of data
have different priorities. Missing deadline events of control signal
may cause severe decline of the QoE, thus these signals should
have the highest priority. In most RTC applications, audio is more
important than video.

The block traces indicate the attributes of the blocks. We select
a variety of scenarios to evaluate the overall performance of the
submitted algorithms. We generate these traces in two steps. Firstly,
we record some actual attributes of data sent in the running of sev-
eral applications, such as time and size of each video or audio frame
of WebRTC recording from RecordRTC [14]. Secondly, we generate
block traces according to the characteristics we want to evaluate.
For instance, there is no need to make any changes to the raw
files when the purpose is to simulate the original application; but

we complicate the patterns to evaluate the performance for more
complex applications that may appear in the future. For example,
we add small high-priority blocks into WebRTC traces to imitate
control signals in applications that need more interactivity. The
finished traces are stored in text format, with each line correspond-
ing to a block of an original or hypothetical application. Each line
contains: (i) the timestamp, (ii) the size in bytes. Block information
with different deadlines or priorities are stored in different files.
Priority and deadline are indicated by name of the file.

3.2 Network Traces
To test whether the algorithms can obtain a good QoE in a wide
range of network environments, this challenge evaluates submit-
ted solutions over a large corpus of network traces. Each network
trace is a text file containing multiple lines. Each line contains four
floating-point numbers: the timestamp in seconds, the measured
throughput in kbps, the loss rate and the one-way delay in mil-
liseconds. The time interval between each network throughput
sample is 1 sec. The network trace is generated in two ways: (i)
We concatenated randomly selected traces from the collected real
network traces in WiFi and 4G scenarios provided by PowerInfo.
We only considered the original traces where the average through-
put is less than 150 Mbps and the minimum throughput is above 8
Mbps. (ii) We leveraged the methods from Pensieve [16] to create a
synthetic dataset. We design a dataset to cover a relatively broad
set of network conditions, with average throughputs of 8 – 150
Mbps. We use RTTs between 0 ms and 100 ms in steps of 20 ms.
These throughputs and RTTs cover the majority of global network
conditions reported in [10] and [22]. The loss rate of each trace will
be set to either 0.00 or 0.01.

3.3 Background Traffic Traces
To simulate the complex environments in the wide area network,
we replay dynamical cross traffic by using background traffic traces.
These traces are recorded from three different flows: live broad-
cast streaming from douyu.com; video on demand from the bilibili
player, which based on ijkplayer [4], one of the most popular play-
ers in open-source community; browsing a variety of complex Web
content on bilibili.com. The background traffic traces are optional
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Figure 3: A typical framework of RTC application.

for each simulation, different from block traces and network traces,
which are required by every simulation. In this challenge, we test
the performance of the algorithm in an exclusive link and the per-
formance when there is dynamic background traffic.

4 TASK AND EVALUATION
For the 2021 Multimedia Grand Challenge, we encourage the par-
ticipants to take on the challenge of designing transmission mech-
anisms for delay-sensitive applications to improve quality of ex-
perience. We provide participants with an open-source platform,
consist of the simulator, datasets and algorithms demos. A calcula-
tion method that converts block completion into QoE is provided
to evaluate the score after simulation.

4.1 Task Description
The participants are asked to design block scheduling and band-
width estimation algorithms to achieve high QoE when their al-
gorithms are run in the simulator given various block traces and
different categories of network traces, while there may be some
background traffic traces used.

We select two parts that have great impacts on the meeting
deadline of blocks: the simulator (i) determines the sending rate
using the bandwidth estimator and (ii) selects the block to send at
each moment using a block scheduler. 1. Bandwidth Estimator:
Bandwidth estimation has a great impact on the sending rate of
blocks and the delay of path, which in turn affects if the blocks
could meet their deadlines. The bandwidth estimation algorithm
needs to decide the sending rate of each moment using input signals.
2. Block Scheduler: Each block has properties such as deadline
and priority. Block scheduler needs to balance these tradeoffs and
decide which blocks should be sent at a certain moment.

These two algorithms interact with the simulator. It takes the
observations as shown in Table 1 from the environment as inputs.
According to these states, the algorithm decides on the pacing rate
or congestion window and the id of the block to be sent for the next
moment. Participants will design and develop these two transmis-
sion layer algorithms and implement them in the simulator. The
goal is to optimize the QoE of multiple delay-sensitive application
scenarios with the traces we provide. The grand challenge pro-
vides tools to run the simulation and visualize the results, helping
participants to run and improve their solutions.

4.2 QoE Model
There exists significant variants in QoE for multimedia applications,
such as video streaming [16]. The quality perceived by a user is
generally improved when blocks arrive timely. Deadline misses
may degrade the QoE. For example, missing the deadline of a video
streaming chunk may cause rebuffering, which should be penal-
ized [26]. For real-time Communication, if a block miss the deadline
(e.g., several hundred milliseconds) for only one participant, there
will be a severe negative impact on the QoE of the whole group [1].
Thus, we model the QoE as:

𝑄𝑜𝐸 =

𝑁∑
𝑛=1

𝜙 (𝑃𝑛) ×𝑚𝑒𝑒𝑡𝑛 − 𝜇

𝑁∑
𝑛=1

𝜓 (𝑃𝑛) × (1 −𝑚𝑒𝑒𝑡𝑛)

where 𝑚𝑒𝑒𝑡𝑛 is a binary-state value and indicates whether the
𝑏𝑙𝑜𝑐𝑘𝑛 arrives before the deadline (i.e., 𝑚𝑒𝑒𝑡𝑛 = 1 means 𝑏𝑙𝑜𝑐𝑘𝑛
met its deadline,𝑚𝑒𝑒𝑡𝑛 = 0 means 𝑏𝑙𝑜𝑐𝑘𝑛 missed its deadline); 𝑃𝑛
denotes the priority of 𝑏𝑙𝑜𝑐𝑘𝑛 ; 𝜙 (𝑃𝑛) expresses the QoE increase
if 𝑏𝑙𝑜𝑐𝑘𝑛 arrives before its deadline. The block with high priority,
which is significant to user’s experience, corresponds to high 𝜙 (𝑃𝑛);
𝜓 (𝑃𝑛) penalizes the deadline missing event of 𝑏𝑙𝑜𝑐𝑘𝑛 .

In this challenge, we consider a simplified choice of𝜙 (𝑃𝑛) ,𝜓 (𝑃𝑛)
and 𝜇 :

𝜙 (𝑃𝑛) = 𝑃𝑛, 𝜓 (𝑃𝑛) = 𝑃𝑛, 𝜇 = 1
By using the above QoE model, we evaluated the participants’

algorithms in a simulation given combinations of traces. For each
block scenario, we randomly select tens of network traces from
both collected and synthetic ones. Each selected case runs once in
an exclusive link, and runs three times respectively under three
background traces. Thus every solution is evaluated under hundreds
of combinations.

5 OVERVIEW OF SUBMISSIONS
In this grand challenge, 45 teams submitted their solutions. All
the top ten teams use heuristic algorithms. They all utilized both
network signals and the properties of blocks to decide which block
to send. For bandwidth estimator, most of their algorithms are
variants of existing algorithms such as BBR [6] and Copa [2]. The
most popular network signal is delay. Almost all top teams use
delay in both two parts of solution. This indicates the significance
of delay signals for optimization of deadline requirements.

The highest scored learning-based algorithm is ranked 13th place
on the leader board. Two key factors may have the most effect on
the relatively poor performance of learning-based algorithms in this
competition: (i) The evaluation process combines multiple applica-
tion scenarios, background traffic scenarios, and network scenarios.
The low generalizability makes it is difficult for learning-based algo-
rithms to obtain great overall performance; and (ii) The simulator
supports packet-level actions, which enable quick response to new
events. Thus the implicit prediction advantage from learning-based
algorithms can bring little improvement.
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